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a b s t r a c t

In modern ecommerce platforms, product content information may have two origins: one is tree-
structured taxonomy attributes, and the other is free-form folksonomy tags. This paper proposes a
hybrid model to incorporate taxonomy and folksonomy information to enhance ecommerce recom-
mendations. It first develops a tree matching algorithm to establish the overall similarity between
items, where tag information is integrated for semantic analysis for taxonomy attributes. Next, it
proposes a unique random walk model on a heterogeneous graph constructed by user nodes and item
nodes and different types of relations — user–item preference and item–item similarity relations. The
random walk model is designed to be effective to identify the nearest item nodes for a particular user
node, which are seen as the best-fit items for recommendations. Empirical experiments demonstrate
that the proposed model improves performance in terms of both recommendation coverage and
accuracy, especially for sparse data.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Recommender systems have been widely deployed as shop-
ing assistants in large-scale ecommerce sites like Amazon,
aobao, eBay, etc., where individual users are hard to navigate
ll candidate items [1–3]. It has been reported that recommender
ystems are able to enhance ecommerce by encouraging potential
uyers, increasing cross-selling and building customer loyalty
ibid]. Recommendation techniques are generally classified to
hree strategies: (1) Content-based (CB) approaches that search
tems similar to the ones previously chosen by users [4]; (2) Col-
aborative filtering (CF) that poll items preferred by other users
ith similar preferences [5], and (3) hybrid models that make
ombination of both CB and CF ideas [6,7]. Hybrid models are
hought to have advantages in incorporating different sources to
lleviate the sparseness problem of CF or CB models that rely only
n single-source data. In the field of ecommerce, product content
nformation is with different forms and is usually integral for
ecommendation making. The most common content information
f ecommerce products are the standard taxonomy attributes. For
xample, an ecommerce seller will indicate the attributes of a
tandard taxonomy for a laptop, like CPU, memory, hard-drive,
tc., in a tree-structure. Despite standard taxonomy attributes,
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E-mail addresses: maomingsong@jxufe.edu.cn (M. Mao),
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950-7051/© 2021 Elsevier B.V. All rights reserved.
user-generated-content (UGC) like tags also constitutes item con-
tent information with the development of Web 2.0 applications.
A tag like ‘‘gaming laptop’’, for example, may indicate that the
laptop is with high graphical capacity. Compared to taxonomy,
tags are called as a type of ‘‘folksonomy’’ information. Although
there have been some models utilizing taxonomy [8,9] and folk-
sonomy [10,11] separately for recommendations, we notice that
there are few integrating both [12]. Thus, this study develops a
hybrid ecommerce recommendation model by incorporating both
product taxonomy and folksonomy information.

Three common information resources in ecommerce are uti-
lized in this study as input: explicit user preference (ratings),
item taxonomy attributes and item folksonomy tags. We firstly
perform random walks on a heterogeneous graph by considering
users and items as two groups of nodes, and two types of relations
as edges — user–item preference relations and item–item similar-
ity correlations. The user–item preference relations are estimated
from the ratings given by users to items, and the item–item
correlations are built by comparing item content information, for
which we develop a tree matching algorithm integrating both
taxonomy and folksonomy information.

The contributions of this study are that it provides a tree
matching method as a fusion scheme to handle different types
of content information — tree-structured taxonomy attributes
and free-form folksonomy tags; and it designs a unique random
walk model on a heterogeneous graph with different types of
nodes and edges. Like other hybrid recommendation models,
this study aims to utilize heterogeneous information to improve
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ecommendation coverage while maintaining high recommenda-
ion accuracy. By incorporating taxonomy and folksonomy infor-
ation besides ratings, this study establish various correlations
etween users and items, thus improve recommendation cover-
ge. Empirical experiments also demonstrate that more precise
anking results can be derived by the proposed random walk
odel. Hence, the proposed tree match and random walk model
ethods effective in improving recommendation performance in

erms of both coverage and accuracy.
The remainder of this paper is as follows. Section 2 includes

elated works of our recommendation models. In Section 3, we
onduct a comprehensive content analysis for ecommerce prod-
cts with both taxonomy and folksonomy information, where a
axonomy tree matching algorithm is proposed. In Section 4, we
ropose a random walk model on a user–item graph with dif-
erent types of nodes and edges. Recommendations can be made
y searching the nearest item nodes for a particular user node.
ection 5 conducts experimental analyses for the performance of
ur model. Conclusion of this study and future research directions
re given in the last section.

. Related works

Ecommerce recommender systems can be seen as search en-
ines to find items that may be interested by users. As afore-
entioned, CB, CF and hybrid models are the three main rec-
mmendation strategies. The key idea of CB is to find items
ith similar content attributes of those previously chosen by
sers [4,13]. CF takes a different approach by extracting user
rofile from historical preferences [5,14,15]. CF can be further
ivided into memory-based and model-based. Memory-based CF
redicts user ratings to unknown items by aggregating the pref-
rences of neighbor users who share similar preferences [16].
odel-based CF approaches, on the other hand, are based on
rediction models in which some parameters have been trained
ith previous data as input. Examples of model-based CF include
atrix factorization models [17], probabilistic topic models [18],

uzzy models [19] , neural networks [20], or other optimization
odels like game theory [21], etc.
This study can be seen as a hybrid model integrating both

F and CB ideas. In general, pure CB and CF models suffer data
parseness problem as they resort only on single source. Hybrid
odels are expected to improve recommendation coverage while
aintaining high accuracy. Existing hybridization strategies can
e categorized into three ways [22]. One is to combine the results
f different models after implementing them separately. In [23],
or example, a trust-enhanced collaborative filtering model and
semantic content matching model are conducted separately to
redict missing ratings, and the average scores are treated as
inal predictions. This type of post-hoc combinations are gen-
rally able to overcome the rating sparseness problem but are
ard to increase prediction accuracy. The second type of hy-
ridization is to incorporate the CF characteristics to enhance CB
odels [24,25]. The third way is to incorporate CB characteristics

o enhance CF, for example, to derive user preferences based on
tem content information [26,27], which is similar to our study.
e conduct content analysis to establish similarity correlations
etween items and import the result as input for an enhanced CF
odel based on random walks.
In ecommerce applications, system managers or sellers de-

cribe their products based on standard tree-structured
axonomies and some tree-matching algorithms have been suc-
essfully developed for recommendations. Existing models in-
lude tree similarity measure, tree isomorphism, and sub-tree
omparison, etc., aiming at semantic analysis for various taxon-
my attributes. In the food recommender system for diabetes
2

patients [28], items (food menus in this case) are represented as
hierarchical food ontology and users (patients) are represented
as weighted nutrition demanding trees. Two patients are then
comparable using a weighted tree matching method so that per-
sonal food menus can be generated for new patients, according
to the diet plans of existing similar patients. Wu et al. [8] propose
a fuzzy tree matching algorithm, in which fuzzy taxonomy trees
and fuzzy profile trees are trained for items and users in advance
and the best-matched items are selected for recommendations.
In [9], Zheng et al. extract user hierarchical interest based on
the analysis of item content ontology, and with such comparable
tree-structured preferences, neighbor users can be detected for
CF-like recommendations.

This study is also related to early recommendation models
based on user–item heterogeneous graph random walk models.
In these models, the active user is treated as the starting point to
perform random walks, and recommendations are generated by
estimating the ranks of stationary visiting probabilities of items.
More extended graphs between users and items are proposed
to incorporate different input resources. For example, authors
in [29] considers the rating data as relations between user nodes
and item nodes and propose a bipartite graph ranking method
to address the recommendation problems. Furthermore, authors
of [30] consider the possible multiple relations between two users
and proposes a multigraph ranking model for multirelational
social recommendations. Correlations between items have also
been imported and random walks can be performed on item–
item graphs, like the ItemRank model [31]. Subsequent studies
also consider item content information as additive special nodes
to build extended graphs with multiple groups of vertices and
edges [32,33]. In general, a multi-partite graph is represented
as a graph G = (Vuser, Vitem, VAttribute1, VAttribute2, . . . , E) contain-
ing user nodes, item nodes, and different aspects of taxonomy
attributes such as movie genres, actors, directors, etc. Random
walks will be performed by jumping between different types of
vertices following different types of edges.

3. Tag-integrated taxonomy tree matching

As aforementioned, ecommerce products are with two dif-
ferent forms of content information: tree-structured taxonomy
attributes and free-form folksonomy tags. In this section, a tree
matching algorithm is developed to infer the overall content
similarity between items.

3.1. Representation of taxonomy and folksonomy

3.1.1. Taxonomy tree
Taxonomy information of products in a specific domain usu-

ally consists of descriptions from multiple aspects with multi-
level tree structure. For example, the descriptions of a book in
Amazon 1 contain various attributes for the ‘‘category’’, ‘‘author’’,
‘language’’, etc., and a restaurant in Yelp2 is associated with
ttributes of the aspects of ‘‘category’’, ‘‘trading hours’’, ‘‘cuisine’’,
tc. We consider these aspects as the top-branches of the tax-
nomy tree and denote a virtual node for each branch. These
spect nodes are the special aspect layer of taxonomy trees in a
pecific domain, like books, restaurants, etc. Every aspect node
‘dominates’’ a subtree with single or multiple levels of sub-
ttributes, which provide deeper level details of item content in
his aspect. We call other attributes except the virtual aspect
odes as attribute layer, which is further identified as level 1
ttribute layer, level 2 attribute layer, etc., according to the depth.

1 https://www.amazon.com/dp/1449361323?ref=emc_b_5_i.
2 http://www.yelp.com.au/c/sydney/restaurants.

https://www.amazon.com/dp/1449361323?ref=emc_b_5_i
http://www.yelp.com.au/c/sydney/restaurants
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Fig. 1. Example taxonomy tree of a book in Amazon.

ig. 1 is the multi-level taxonomy tree of a book in Amazon,
howing that subtrees under different aspect nodes do not have
o be of equal depth. For example, the branch of category has three
evels of attributes, while the branch of author has only one level
ttributes.
The definition of taxonomy trees is given below.

efinition 1 (Domain Taxonomy Tree). A taxonomy tree of a spe-
cific domain of items is defined as a directed graph Γ = {A,→}
with no cycles, where A = {a1, a2, . . .} is a finite node set of
axonomy attributes, and→ is a ‘‘parent–child’’ relation. For two
nodes ai, aj ∈ A, if ai → aj, then aj is a child attribute of ai, and
e say aj ∈ child(ai) and equivalently ai = parent(aj). Note that
node can have multiple (or zero) child nodes, but must have
ne unique parent node. The root node root(Γ ) is a virtual node

representing the topmost parent node, and for any node ai ∈ A,
here is one and only one path from root(Γ ) to ai.

The above definition is the general taxonomy tree for all items
in a domain. For an individual item m ∈ M , where M denotes
the whole item set, it has its own taxonomy tree Γm = {Am,→},
where Am ⊆ A is a subset of A, and Γm is a subtree of Γ .

Let us suppose there are in total K aspect nodes collected from
the taxonomy trees of all items, denoted as C = {c1, c2, . . . , cK }.
Hence, the domain taxonomy tree Γ and every single tree Γm for
m ∈ M will have K branches indicating attributes from different
aspects.

3.1.2. Folksonomy tags
In modern ecommerce, customers are also able to create de-

scriptions in terms of tags as an extra facet of item content
information. Despite creating new tags every time, users can
also select existing tags to describe items. Thus, an item can
be assigned with a same tag repeatedly, and the count of their
co-occurrence indicates the strength of how much this item is
relevant to this tag. In detail, we use the tf–idf metric (term
frequency–inverse document frequency) to represent the relevance
between items and tags. Let us denote the whole tag set as T =
{t1, t2, . . .}, and the tf–idf measurement for a single item m ∈ M
and a particular tag t ∈ T is calculated by:

tf-idf(m, t) = tf(m, t)× log
|M|

#items containing t
(1)

where tf(m, t) is the times of that tag t being assigned to item m,
nd Tm ⊂ T is the set of tags assigned to item m. With this metric,
he tags appearing in majority of items are penalized as they are
ot able to discriminate items well.
Different with tree-structured taxonomy information, the folk-

onomy information of an item m is thus represented with a
ector-form with |T | elements, in which the ith element is the
alue of tf-idf(m, t ).
i

3

In general, taxonomy information is relatively complete in-
formation, but folksonomy information could be absent or in-
complete if no or few tags are assigned to a particular item.
We conduct an empirical analysis of the tag distributions with a
public dataset of Movielens.3 In the dataset, about thirty percent
of items have no tags. For the rest items, we present the item-tag
frequency distributions in Fig. 2(a). We find that a large number of
items contain only a few tags, i.e., less than five. We also present
the item frequency for tags in Fig. 2(b), and it shows that there
are also many tags only appearing in a small number of items.

3.2. Semantic analysis for taxonomy attributes

To incorporate the advantages of both taxonomy and folkson-
omy, we establish the correlations between taxonomy attributes
and tags. In detail, a pair of an attribute a ∈ A and a tag t ∈ T can
be linked via the common items that contain both of them:

f (a, t) =
∑

m:a∈Γm

tf-idf(m, t) (2)

Furthermore, we consider that tags are also issued with re-
pect to the aspects of taxonomy attributes. Referring to the
irtual aspect nodes defined in taxonomy tree, we call the cor-
elation relationship between a tag and an aspect node c ∈ C as
‘‘domination’’ relationship, that is, if a tag t is dominated by an
aspect node c ∈ C , it means the tag is used as description with
egarding to the aspect c . For example, the most issued tags of the
ovie ‘‘Avatar’’ include ‘‘sci-fi’’, ‘‘James Cameron’’ and ‘‘too long’’.

ntuitively, these tags are descriptions from the aspects of genre,
irector and running time, respectively, which are virtual aspect
odes for movie taxonomy trees. In our study, the domination
elationships are detected by the following definition.

efinition 2 (Tag Domination). For each tag t , it is dominated by
one and only one aspect node c ∈ C . The domination aspect is
detected by the following:

t ≺ argmax
c∈C

max
a∈child(c)

f (a, t). (3)

The above definition indicates that a tag is dominated by the
spect with the most relevant attribute. It can be explained by
simple example: if a tag ‘‘adventure’’ is found to be highly

orrelated to an attribute ‘‘sci-fi’’ under the aspect node ‘‘genre’’
n the movie taxonomy tree, then we consider that this tag is also
description from the aspect ‘‘genre’’, though it is not included
s standard taxonomy attribute for movie genre.
Figuring out the dominance aspect of tags is also helpful to

nderstand the characteristics of items, and to conduct more
recise comparison between them, which is discussed later in the
ext section.
Semantic similarities between different attributes are essen-

ial for matching item taxonomy trees and human expects are
sually needed in previous studies. By integrating folksonomy
nformation, however, we can infer semantic similarities between
axonomy attributes automatically. The following proposes the
ag-derived semantic similarity between attributes.

efinition 3 (Tag-Derived Semantic Similarity of Taxonomy At-
ributes). For two taxonomy attributes except the aspect nodes,
1, a2 ∈ A satisfying a1, a2 /∈ C , the tag-derived semantic
imilarity between them is defined as:

s(a1, a2) =
∑

t∈T f (a1, t)f (a2, t)√∑
t∈T f (a1, t)

√∑
t∈T f (a2, t)

∈ [0, 1], (4)

3 http://grouplens.org/datasets/movielens/.

http://grouplens.org/datasets/movielens/
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Fig. 2. The item-tag frequency distributions (Movielens-latest dataset).
In the above definition, Cosine correlation is used to produce a
decimal value as the semantic similarity. It is worth mentioning
that (4) is able to uncover implicit correlations between taxon-
omy attributes even at different levels to prevent vague human
evaluation.

3.3. Tree matching algorithm

As aforementioned, user generated folksonomy is not always
available while standard taxonomy is relatively needed for ecom-
merce products, therefore we compare taxonomy trees to infer
the overall content similarity between two items.

With our definitions, item taxonomy tree contains K top-
level subtrees corresponding to the aspect nodes c1, c2, . . . , cK .
We first compare each pair of subtrees under the same aspect
node separately, and aggregate the results as the overall content
similarity. For each aspect node, we use a top-down matching
manner to compare the two subtrees under this aspect.

Given two items m1 and m2 with taxonomy trees Γ1 and Γ2,
respectively, the overall taxonomy similarity between them is
aggregated by the matching results of the subtrees under all K
aspect nodes:

sim(m1,m2) =
K∑

i=1

wiMatch(Γ1[ci], Γ2[ci]), (5)

where Γ [c] denotes the subtree of a taxonomy tree Γ under an
aspect node c ∈ C , and wi > 0 is the weighting of each aspect for
aggregation satisfying

∑
wi = 1.

3.3.1. Weightings
Here we import the tag domination information to automat-

ically generate the weightings in (5). For all items in a specific
domain, by gathering the tag domination of all tags, we can
discover which aspect for this domain is most discussed or con-
cerned by users. For example, if most tags for books are, as
defined in this study, dominated by the aspect ‘‘author’’, then we
say the ‘‘author’’ of books is most concerned by users and should
be of higher priority when comparing book taxonomy trees. The
following equation is used to build the weightings of each aspect
node ci ∈ C:

wi =

∑
t≺ci

∑
m∈M tf(m, t)∑

t∈T
∑

m∈M tf(m, t)
, i = 1, . . . , K . (6)

With (6), we can establish a ‘‘global’’ weightings for the aspect
nodes in the taxonomy tree of a specific domain of items, such as
books, movies, etc.
4

3.3.2. Subtree matching
A top-down matching process for each pair of subtrees under

a same aspect node is proposed below. At each level, two tasks
are undertaken to match the attribute nodes:

1. Connect the common nodes. This step pairs those nodes
exactly shared in both sides. Next-level comparison will be
undertaken for their children nodes in both sides of the
subtrees.

2. Match the non-common nodes. For the non-common nodes
that appear only in one side, this step detects which are
best matched. Next-level comparison will not be under-
taken for their children nodes.

When no more nodes can be matched, the difference at the
current level l is calculated by:

δl =

∑
(1− ss(paired non-common nodes))

|paired non-common nodes| + |paired common nodes|
.

(7)

After all levels comparison being completed, the matching
result of two subtrees under an aspect node c is obtained by the
following:

Match(Γ1[c], Γ2[c]) =
∏
l

(1− λlδl) (8)

Here a positive parameter λ ∈ [0, 1] is set to decrease along
with increasing depth of matching. Simply, for example, we let
λl = 1/l in this study. The Algorithm 1 shows the main steps of
our top-down subtree matching algorithm.

In addition, Fig. 3 shows a small example, where the subtrees
under an aspect c1 of the taxonomy trees Γ1 and Γ2 of two
items are given. With the proposed matching algorithm, we first
match the topper level nodes in the attribute layer. In level 1 as
shown in Fig. 3(a), we find a common node 1 appearing in both
sides. For the rest three nodes 2, 3 and 4, assuming the semantic
similarity between node 2 and node 3 is higher than the similarity
between node 2 and node 4, i.e., ss(2, 3) > ss(2, 4), then we pair
node 2 and node 3 in this level matching. At level 1, we obtain
δ1 = (1−0.8)/2 = 0.1, according to (7). Next, we conduct level 2
comparison for the child nodes of the common node 1 and omit
the child node information of other nodes (2, 3 and 4). In Fig. 3(b),
we determine two common nodes 6 and 7, and match node 5
with node 8, and this level difference is δ2 = (1−0.4)/3 = 0.2.
Similarly, in level 3 comparison of Fig. 3(c), two pairs of nodes
(9, 12) and (10, 13) are matched and the difference at this level
is δ3 = (0.7+0.5)/2 = 0.6. After all levels matching completed, the
similarity of two subtrees under the aspect c1 is:

Match(Γ1[c1], Γ2[c1]) = 0.9× 0.9× 0.8 = 0.648.
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ata: Two subtrees Γ1[c] and Γ2[c] under an aspect node c
esult: subtree similarity sim(Γ1[c], Γ2[c])
nitialization:
initial matching level l = 1;
candidate nodes D1: child nodes of c in Γ1[c];
candidate nodes D2: child nodes of c in Γ2[c].
hile D1 ̸= ∅ and D2 ̸= ∅ do
initialize sum = 0, n = 0
get common candidates CO← D1 ∩ D2
get candidates only in Γ1: X1 ← D1 − D2
get candidates only in Γ2: X2 ← D2 − D1
while X1 ̸= ∅ and X2 ̸= ∅ do

pair (x1, x2)← arg max
a∈X1,b∈X2

ss(a, b)

update sum← sum+ (1− ss(x1, x2))
update n← n+ 1
delete x1 from X1
delete x2 from X2

obtain this level difference δl ←
sum

n+|CO|
update matching level l← l+ 1
clear all nodes in D1 and D2
for each common node d in CO do

add child nodes of d in Γ1[c] to D1
add child nodes of d in Γ2[c] to D2

return comparison result sim(Γ1[c], Γ2[c]) =
∏

l(1− λlδl)
Algorithm 1: Subtree match algorithm

Fig. 3. Top-down subtree matching example.

. Hybrid recommendation framework

Let us consider a common scenario of ecommerce applications
ith such given information: users can evaluate items with scaled
5

ratings; and items are described with taxonomy attributes (pro-
vided by sellers) and folksonomy tags (created by users). In this
section, we propose a hybrid recommendation model based on
random walks for a heterogeneous graph of users and items with
different types of relations.

4.1. Heterogeneous graph construction

Connections for users and items can be derived from different
resources. First, we consider the user ratings as user–item corre-
lation relations. Second, with the above proposed tree matching
algorithm, we can build similarity correlations between items
from the tree-structured taxonomy attributes and free-form folk-
sonomy tags. Consequently, we consider a unique graph with two
groups of nodes, users and items, and two types of relations,
user–item rating relations and item–item similarity relations.
Fig. 4 demonstrates the structure of the user–item graph, where
a pair of user and item (like user 1 and item 3) can be reached
via multiple paths with different types of edges. The recommen-
dation problem can therefore be transferred to a random walking
model on the unique graph structure — to search the item nodes
with the highest probabilities to be reached by a particular user
node.

It is worth noticing that we cannot compare different types
of edges directly, like rating relation and similarity relation that
with different meanings or even different scales. This becomes a
difficulty and highlight of this study, and we develop a unique
random walking manner below.

Let us denote U = {u} as the user set, M = {m} the
tem set, r(u,m) the rating value given by a user u to an item
, and sim(m1,m2) the content similarity of two items m1 and
2, estimated by the above proposed taxonomy tree matching
lgorithm. We build a special graph G = (V , E), where the vertex
et V = U ∪M is the union set of users and items, and the edge
et E = {r(u ∈ U,m ∈ M)} ∪ {sim(m1 ∈ M,m2 ∈ M)} consists
f two groups of relations: user–item ratings and item–item
imilarities. Given a particular user node u, the recommendation
roblem is defined as to determine an optimal ranking function
: V → R to rank all vertices in the user–item graph. Ultimately,
he top-ranked items are selected returned to the active user as
ecommendations.

.2. Random walk manner

For the constructed graph with heterogeneous information of
ating information and item similarities that are not comparable
irectly, we propose a unique random walk strategy as follows.
Given an active user u0 for whom we need to make recom-

endations, we perform random walks on the user–item graph
ith this user node as the starter point. The idea is that after
long-term walking to convergence, the most visited items are
onsidered as highly relevant to the active user. The random
alk with restarting theory [31] is applied in our study. Because
here are two different types of edges in the user–item graph,
e elaborate the possible options of next move w.r.t the current
isited vertex type.
First, if the current visited node is a user node u ∈ U , the

ptions of next move include:

1. with probability α, it randomly moves to an item node
linked to the current user u.

2. with probability 1 − α, it jumps back to the starting node
(restarting the walk).

ere the parameter α ∈ (0, 1) is a decay factor that usually ranges
rom 0.8 to 0.85 for best performance as in previous studies.
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If option 1 is selected, the probability of moving to a particular
tem node m ∈ M is simply:

(m|u) =
r(u,m)∑
|M|
i=1 r(u,mi)

Second, if the current visited node is an item node m ∈ M , the
ptions of next move will be:

1. with probability α, it randomly moves to an adjacent node.
Because item node m may be connected by two types of
edges, i.e., linked to user nodes via rating relations or linked
to item nodes via similarity relations, a Bernoulli switch
variable s is introduced to control which type of edges is
followed in the next move. So we have further two options
in this case:

(a) if s = 0, it randomly moves to a linked user node
via rating relations. In this case, the probability of
moving to a user node u is

P(u|m) =
r(u,m)∑
|U |
i=1 r(ui,m)

(b) if s = 1, it randomly moves to a linked item node
via similarity relations. In this case, the probability
of moving to another item node n is

P(n|m) =
sim(m, n)∑
|M|
i=1 sim(m,mi)

2. with probability 1− α, it jumps back to the starting node.

Summing up the above walking strategy, if not jumping back,
he transition probability between user and item nodes are as
ollows, where P (t)(u), P (t)(m) denotes the probability of being
isited at time t for user node u and item node m, respectively.
For a user node u:

(t+1)(u) =
∑
m∈M

P(u|m, s = 0)P (t)(m)P(s = 0) (9)

For an item node m:

(t+1)(m) =
∑
n∈M

P(m|n, s = 1)P (t)(n)P(s = 1)+
∑
u∈U

P(m|u)P (t)(u)

(10)

.3. Recommendation making

The stationary visiting probabilities of all nodes in the user–
tem graph is considered as ranking them w.r.t to starting user
ode. Since our goal is to reveal the best fit items, we abstract
 w

6

he ranking results for only item nodes. Combining (9) and (10),
e get the following update equation for items:
(t+1)(m) =

∑
n∈M

P(m|n, s = 1)P (t)(n)P(s = 1)

+

∑
u∈U

P(m|u)
∑
n∈M

P(u|n, s = 0)P (t−1)(n)P(s = 0) (11)

The model can be written with matrix–vector notations. We
enote the user–item rating matrix as R with Rij = r(ui,mj), and
he item–item similarity matrix S with Sij = sim(mi,mj), and
et the diagonal elements Sii = 0. We also denote two diagonal
atrices Πu with size |U | × |U | and Πmwith size |M| × |M|

epresenting the vertex degrees of users and items respectively in
he rating matrix R, i.e., (Πu)ii =

∑
|M|
j=1 Rij and (Πm)ii =

∑
|U |
j=1 Rji.

imilarly, the degree matrix of items in the similarity matrix S is
efined as a diagonal matrix Dm with size |M| × |M| and (Dm)ii =
|U |
j=1 Sij.
We suppose P(s = 1) = β and thus P(s = 0) = 1 −

, and denote a column vector p with length |M| where each
lement pi = P(mi), and let p(t) represent the visiting probability
istribution at time t .
Based on (11) and the restarting model, we obtain the update

quation of p as follows.
(t+1)
= α

(
βAp(t)

+ (1− β)Bp(t−1))
+ (1− α)q (12)

Here, two matrices A = STD−1m and B = RTΠ−1u RΠ−1m are
efined to simplify expressions and q is the starting distribution.
Because the designed random walks start from a single ac-

ive user such that no items are visited at beginning, we let
= p(1) as the starting distribution. That is, each element

i = r(u,mi)/
∑
|M|
j=1 r(u,mj), where u is the active user requesting

ecommendations.
The stationary distribution p∗ will gained when random walks

each convergence as proven in [34]. Let p∗ = p(t+1)
= p(t)

=
(t−1) and solve (12) with simple algebraic operations and we
btain
∗
= (1− α) (I − α (βA− (1− β)B))−1 q

≜ (I − α (βA− (1− β)B))−1 q (13)

Here the positive constant (1 − α) is omitted because it does
ot affect ranking results. The top ranked unseen items for the
ctive user will be suggested and recommendations are then
ompleted.

. Experiments

Experiments are conducted to compare our model with others

ith a public dataset of Movielens [35]. It is an extension of
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he standard Movielens dataset with richer content information
f items, therefore has been widely used for evaluating hybrid
ecommendation models.

.1. Experiment setup

The dataset has 10109 movies with taxonomy information
rom five aspects – genres, directors, actors, countries and locations,
nd 46720 tags after necessary cleaning. The rating data is rich,
n total 855k rating records, giving an average per user of 405
atings. To evaluate the performances of recommendation models
or sparse data, we extract different groups from the original
ating data with different sparseness levels. The original dataset is
enoted as Group 1, and then we randomly select half of ratings
n it to build the Group 2 dataset, and then select half of Group 2
o build Group 3, and so on. We conduct this procedure five times
nd generate 6 data groups. The rating sparsity of these data
roups are 96%, 98%, 99%, 99.5%, 99.7% and 99.9%, respectively.
or the first data group, we split it to training set (80%) and
est set (20%) randomly. For other data groups, we select 80% as
raining set, but still import the test set of group 1 for testing to
revent too small-size test sets. The items already being rated in
he training set will be removed from the test set for each user.
e conduct separate experiments on each of the six groups and

pply five-folder validations (20% for test and 80% for training)
or each.

The following related models are included for comparison.
irst, the memory-based CF is included. A model-based CF based
n random walk is selected, which is called ItemRank [31]. In-
pired by the works of [29,33], a multi-partite graph random
alk model incorporating item taxonomy is implemented, and is
amed as MultiWalk for short. Another content-based model that
ntegrates item taxonomy and tag information for recommenda-
ions [12] is included, named as TagTax. The hybrid model based
n fuzzy tree matching techniques in [8] is imported, denoted
s FuzzTree. A latest hybrid recommendation model based on
ser hierarchical preferences and social relations in [9] is also
ncluded, marked as TreePref. Notice that not explicit social re-
ations are provided in the dataset, so we extract implicit social
onnections based on the tag data as input, like in previous
ag-based recommendation studies [10,30]. The last, our hybrid
odel based on taxonomy and folksonomy is marked as TFhybrid

or short. We can summarize these models into two groups —
rediction-based models that aim to predict the ratings to each
tem separately (CF, TagTax, FuzzTree, TreePref) and ranking-
ased model that aim to derive a ranking order for all items
ItemRank, Multi Walk, TFhybrid).

.2. Metrics

If rating data is insufficient, recommendation models may fail
o make predictions, therefore it is needed to evaluate the ability
f compared models in alleviating the rating sparseness problem.
n our experiments, the task for each model is to predict the
ating between each pair of users and items in the test set. The
overage metric is selected for evaluation, which is defined as
he number of successfully predicted tasks divided by the total
umber of prediction tasks in the test set, as follows:

overage =
# successful prediction tasks

# total prediction tasks
(14)

Because the ranking based models do not predict rating scores
irectly, it is not able to calculate the prediction errors like MAE
Mean Absolute Error) and RMSE (Root Mean Square Error). The
DCG metric (Normalized Discounted Cumulative Gain) is hence
elected to evaluate ranking accuracy for compared models. For
7

Fig. 5. Recommendation coverage comparison under different sparsity levels.

each model, the ranking order of items according to predicted
scores is compared with the ideal ranking order according to
the actual ratings. The metric DCG (Discounted Cumulative Gain)
is defined as follows. Given a ranking order where the actual
ranking score at position i is reli, the DCG value at a specific
osition p is calculated as:

CG@p =
p∑

i=1

reli
log2(i+ 1)

(15)

he normalized DCG value (NDCG) is then defined as the pre-
iction result of a model divided by the ideal (actual) result,
alculated as: NDCG@p = DCG@p/IDCG@p.
One limitation of the NDCG metric for recommendation prob-

lems is that we cannot obtain the actual ratings of each user to
all items. Most existing studies [36] commonly set the ranking
score as 1 for the items in the test set and 0 for others. This will
result in too small NDCG values because the test set is usually a
very small portion of the whole item set. Again, it is unfair for
the prediction-based models that are not optimized for list-wise
ranking for all items. In our experiment, we therefore evaluate the
NDCG metrics only for the items in the test set. The ideal ranking
score is set to be the rating divided by 5 (the maximum rating).
Equivalently, we evaluate whether a model can rank the known
items in the test set correctly.

5.3. Results

We test each model with the generated data groups. For the
random walk models (ItemRank, MultiWalk and TFhybrid) shar-
ing a similar parameter α, we let α = 0.8 initially. In addition,
the parameter β for our model is set to be 0.5. Fig. 5 shows the
result of recommendation coverage for each model on each data
group.

It indicates that recommendation coverage is highly impacted
by the sparseness level of rating data. For the initial dataset
with the richest rating data (averagely 405 ratings per user),
every model achieves the highest recommendation coverage —
almost 100%. For other data groups with sparser ratings, however,
these models fail to complete all prediction tasks, i.e., they are
not able to generate recommendations for the ‘‘cold-start’’ users
with insufficient ratings. In detail, we can find that the scores of
single-source based models (CF and ItemRank) decrease sharply,
while hybrid models can alleviate this problem to some extent.
Our model maintains the highest scores on all data groups. This
demonstrates the success of integrating other resources like tree-
structured content and tag information in alleviating the rating
sparseness problem.

Table 1 shows the performance comparisons in terms of rank-
ing accuracy . Each model is tuned with its best parameter set-
tings, and we calculate the NDCG for all items in the test set.
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omparison on ranking accuracy (NDCG).

#1 #2 #3 #4 #5 #6
96% 98% 99.0% 99.5% 99.7% 99.9%

CF 0.737 0.647 0.463 0.505 0.356 0.128
ItemRank 0.633 0.565 0.467 0.419 0.286 0.118
MultiWalk 0.659 0.555 0.507 0.519 0.376 0.277
FuzzTree 0.727 0.597 0.491 0.479 0.434 0.326
TagTax 0.711 0.577 0.487 0.459 0.406 0.316
TreePref 0.730 0.645 0.556 0.576 0.504 0.407
TFhybrid 0.731 0.660 0.581 0.615 0.543 0.439
improv. −0.81% 2.01% 4.50% 6.77% 7.74% 7.86%

From the results, we can find that the proposed model TFhybrid
achieves the best ranking performance for almost all data groups,
especially in sparse environment, e.g., the last group with the
most sparse rating data. For other models, the pure CF has high
accuracy when the ratings are rich, as in the first group, but it
loses the superiority quickly when ratings became increasingly
sparse. As another single-source based model, ItemRank suffers
the same problem and performs the worst on sparse datasets.
We can find that hybrid models incorporate multiple sources
of information generally outperform single source-based models
when the data are sparse, especially for the models incorporating
both taxonomy and folksonomy information (TagTax, TreePref,
and TFhybrid).

With the above comparisons, we can conclude that the pro-
osed hybrid model is able to improve recommendation perfor-
ance in terms of both recommendation coverage and recom-
endation accuracy. The incorporation manner for item taxon-
my and folksonomy in this study is believed to be effective in
lleviating the rating sparseness problem.

. Conclusion and future study

This paper proposed a hybrid ecommerce recommendation
pproach based on a random walk model of users and products
nd various relations between them. Heterogeneous information
s utilized to build the user–item graph as input, including item
axonomy information and folksonomy information and user rat-
ng data on items. A novel tree matching algorithm is developed
o compare the overall similarity between item taxonomy. Tag
nformation is integrated for semantic analysis for taxonomy
ttributes. With the established item–item similarity relations
nd user–item rating relations, a heterogeneous graph for users
nd items can be constructed, and a random walk strategy for
he unique graph data is developed to determine nearest item
odes for given user nodes as recommendations, which can be
een as a hybrid recommendation model that integrates both CB
nd CF ideas. The empirical experiments demonstrate that our
odel is able to improve recommendation performance in terms
f coverage and accuracy, especially in the case of sparse data.
omparing with related models, the improvements also indicate
hat the proposed tree matching algorithm is effective to incor-
orate item taxonomy and folksonomy information to estimate
recise correlations between items. One of the limitations in this
tudy is that context information is not included. In the future
tudy, we would like to incorporate context information like
ocial networks, location and temporal information to enhance
ur hybrid model.
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